BLM helicase complements disrupted type II telomere lengthening in telomerase-negative sgs1 yeast.
نویسندگان
چکیده
Recombination-mediated pathways for telomere lengthening may be utilized in the absence of telomerase activity. The RecQ-like helicases, BLM and Sgs1, are implicated in recombination-mediated telomere lengthening in human cells and budding yeast, respectively. Here, we show that BLM expression rescues disrupted telomere lengthening in telomerase-negative sgs1 yeast. BLM helicase activity is required for this complementation, indicating BLM and Sgs1 resolve the same telomeric structures. These data support a conserved function for BLM and Sgs1 in recombination-mediated telomere lengthening.
منابع مشابه
Dynamic regulation of single-stranded telomeres in Saccharomyces cerevisiae.
The temperature-sensitive phenotypes of yku70Delta and yku80Delta have provided a useful tool for understanding telomere homeostasis. Mutating the helicase domain of the telomerase inhibitor Pif1 resulted in the inactivation of cell cycle checkpoints and the subsequent rescue of temperature sensitivity of the yku70Delta strain. The inactivation of Pif1 in yku70Delta increased overall telomere l...
متن کاملModulation of Telomeres in Alternative Lengthening of Telomeres Type I Like Human Cells by the Expression of Werner Protein and Telomerase
The alternative lengthening of telomeres (ALT) is a recombination-based mechanism of telomere maintenance activated in 5-20% of human cancers. In Saccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y' element and short telomer...
متن کاملSGS1 is required for telomere elongation in the absence of telomerase
In S. cerevisiae, mutations in genes that encode telomerase components, such as the genes EST1, EST2, EST3, and TLC1, result in the loss of telomerase activity in vivo. Two telomerase-independent mechanisms can overcome the resulting senescence. Type I survival is characterized by amplification of the subtelomeric Y' elements with a short telomere repeat tract at the terminus. Type II survivors...
متن کاملSumoylation of the BLM ortholog, Sgs1, promotes telomere–telomere recombination in budding yeast
BLM and WRN are members of the RecQ family of DNA helicases, and in humans their loss is associated with syndromes characterized by genome instability and cancer predisposition. As the only RecQ DNA helicase in the yeast Saccharomyces cerevisiae, Sgs1 is known to safeguard genome integrity through its role in DNA recombination. Interestingly, WRN, BLM and Sgs1 are all known to be modified by th...
متن کاملThe Pif1 Helicase, a Negative Regulator of Telomerase, Acts Preferentially at Long Telomeres
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, sugges...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 13 شماره
صفحات -
تاریخ انتشار 2005